Category Archives: Open-source security

UKRI Digital Security by Design: A £190M research programme around Arm’s Morello – an experimental ARMv8-A CPU, SoC, and board with CHERI support

PIs: Robert N. M. Watson (Cambridge), Simon W. Moore (Cambridge), Peter Sewell (Cambridge), and Peter G. Neumann (SRI)

Since 2010, SRI International and the University of Cambridge, supported by DARPA, have been developing CHERI: a capability-system extension to RISC Instruction-Set Architectures (ISAs) supporting fine-grained memory protection and scalable compartmentalization .. while retaining incremental deployability within current C and C++ software stacks. This ten-year research project has involved hardware-software-semantic co-design: FPGA prototyping, compiler development, operating-system development, and application adaptation, as well as formal modeling and proof. Extensively documented in technical reports and research papers, we have iterated on CHERI as we evaluated and improved microarchitectural overheads, performance, software compatibility, and security.

As we know, mainstream computer systems are still chronically insecure. One of the main reasons for this is that conventional hardware architectures and C/C++ language abstractions, dating back to the 1970s, provide only coarse-grained memory protection. Without memory safety, many coding errors turn into exploitable security vulnerabilities. In our ASPLOS 2019 paper on CheriABI (best paper award), we demonstrated that a complete UNIX userspace and application suite could be protected by strong memory safety with minimal source-code disruption and acceptable performance overheads. Scalable software compartmentalization offers mitigation for future unknown classes of vulnerabilities by enabling greater use of design patterns such as software sandboxing. Our An Introduction to CHERI technical report introduces our approach including the architecture, microarchitectural contributions, formal models, software protection model, and practical software adaptation. The CHERI ISA v7 specification is the authoritative reference to the architecture, including both the architecture-neutral protection model and its concrete mappings into the 64-bit MIPS and 32/64-bit RISC-V ISAs. Our Rigorous Engineering technical report describes our modelling and mechanised proof of key security properties.

Today, we are very excited to be able to talk about another long-running aspect of our DARPA-supported work: A collaboration since 2014 with engineers at Arm to create an experimental adaptation of CHERI to the ARMv8-A architecture. This widely used ISA is the foundation for the vast majority of mobile phones and tablets, including those running iOS and Android. The £170M UKRI program Digital Security by Design (DSbD) was announced in late September 2019 to explore potential applications of CHERI — with a £70M investment by UKRI, and a further £117M from industry including involvement by Arm, Microsoft, and Google. Today, UKRI and Arm announced that the Arm Morello board will become available from 2021: Morello is a prototype 7nm high-end multi-core superscalar ARMv8-A processor (based on Arm’s Neoverse N1), SoC, and board implementing experimental CHERI extensions. As part of this effort, the UK Engineering and Physical Sciences Research Council (EPSRC) has also announced a new £8M programme to fund UK academics to work with Morello. Arm will release their Morello adaptation of our CHERI Clang/LLVM toolchain, and we will release a full adaptation of our open-source CHERI reference software stack to Morello (including our CheriBSD operating system and application suite) as foundations for research and prototyping on Morello. Watch the DSbD workshop videos from Robert Watson (Cambridge), Richard Grisenthwaite (Arm), and Manuel Costa (Microsoft) on CHERI and Morello, which are linked below, for more information.

This is an incredible opportunity to validate the CHERI approach, with accompanying systems software and formal verification, through an industrial scale and industrial quality hardware design, and to broaden the research community around CHERI to explore its potential impact. You can read the announcements about Morello here:

Recordings of several talks on CHERI and Morello are now available from the ISCF Digital Security by Design Challenge Collaborators’ Workshop (26 September 2019), including:

  • Robert Watson (Cambridge)’s talk on CHERI, and on our transition collaboration with Arm (video) (slides)
  • Richard Grisenthwaite (Arm)’s talk on the Morello board and CHERI transition (video) (slides)
  • Manuel Costa (Microsoft)’s talk on memory safety and potential opportunities arising with CHERI and Morello (video)

In addition, we are maintaining a CHERI DSbD web page with background information on CHERI, announcements regarding Morello, links to DSbD funding calls, and information regarding software artefacts, formal models, and so on. We will continue to update that page as the programme proceeds.

This has been possible through the contributions of the many members of the CHERI research team over the last ten years, including: Hesham Almatary, Jonathan Anderson, John Baldwin, Hadrien Barrel, Thomas Bauereiss, Ruslan Bukin, David Chisnall, James Clarke, Nirav Dave, Brooks Davis, Lawrence Esswood, Nathaniel W. Filardo, Khilan Gudka, Brett Gutstein, Alexandre Joannou, Robert Kovacsics, Ben Laurie, A. Theo Markettos, J. Edward Maste, Marno van der Maas, Alfredo Mazzinghi, Alan Mujumdar, Prashanth Mundkur, Steven J. Murdoch, Edward Napierala, Kyndylan Nienhuis, Robert Norton-Wright, Philip Paeps, Lucian Paul-Trifu, Alex Richardson, Michael Roe, Colin Rothwell, Peter Rugg, Hassen Saidi, Stacey Son, Domagoj Stolfa, Andrew Turner, Munraj Vadera, Jonathan Woodruff, Hongyan Xia, and Bjoern A. Zeeb.

Approved for public release; distribution is unlimited. This work was supported by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL), under contract FA8750-10-C-0237 (CTSRD), with additional support from FA8750-11-C-0249 (MRC2), HR0011-18-C-0016 (ECATS), and FA8650-18-C-7809 (CIFV) as part of the DARPA CRASH, MRC, and SSITH research programs. The views, opinions, and/or findings contained in this report are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government. We also acknowledge the EPSRC REMS Programme Grant (EP/K008528/1), the ERC ELVER Advanced Grant (789108), the Isaac Newton Trust, the UK Higher Education Innovation Fund (HEIF), Thales E-Security, Microsoft Research Cambridge, Arm Limited, Google, Google DeepMind, HP Enterprise, and the Gates Cambridge Trust.

The lifetime of an Android API vulnerability

By Daniel Carter, Daniel Thomas, and Alastair Beresford

Security updates are an important mechanism for protecting users and their devices from attack, and therefore it’s important vendors produce security updates, and that users apply them. Producing security updates is particularly difficult when more than one vendor needs to make changes in order to secure a system.

We studied one such example in previous research (open access). The specific vulnerability (CVE-2012-6636) affected Android devices and allowed JavaScript running inside a WebView of an app (e.g. an advert) to run arbitrary code inside the app itself, with all the permissions of app. The vulnerability could be exploited remotely by an attacker who bought ads which supported JavaScript. In addition, since most ads at the time were served over HTTP, the vulnerability could also be exploited if an attacker controlled a network used by the Android device (e.g. WiFi in a coffee shop). The fix required both the Android operating system, and all apps installed on the handset, to support at least Android API Level 17. Thus, the deployment of an effective solution for users was especially challenging.

When we published our paper in 2015, we predicted that this vulnerability would not be patched on 95% of devices in the Android ecosystem until January 2018 (plus or minus a standard deviation of 1.23 years). Since this date has now passed, we decided to check whether our prediction was correct.

To perform our analysis we used data on deployed API versions taken from (almost) monthly snapshots of Google’s Android Distribution Dashboard which we have been tracking. The good news is that we found the operating system update requirements crossed the 95% threshold in May 2017, seven months earlier than our best estimate, and within one standard deviation of our prediction. The most recent data for May 2019 shows deployment has reached 98.2% of devices in use. Nevertheless, fixing this aspect of the vulnerability took well over 4 years to reach 95% of devices.

Proportion of devices safe from the JavaScript-to-Java vulnerability. For details how this is calculated, see our previous paper.
Proportion of devices safe from the JavaScript-to-Java vulnerability. For details how this is calculated, see our previous paper.

Google delivered a further fix in Android 4.4.3 that blocked access to the getClass method from JavaScript, considerably reducing the risk of exploitation even from apps which were not updated. A conservative estimate of the deployment of this further fix is shown on the graph, reaching 95% adoption in April 2019. On the app side of things, Google has also been encouraging app developers to update. From 1st November 2018, updates to apps on Google Play must target API level 26 or higher and from November 1st 2019 updates to apps must target API level 28 or higher. This change forces the app-side changes necessary to fix this vulnerability. Unfortunately we don’t have good data on the distribution of apps installed on handsets, but we expect that most Android devices are now secure against this vulnerability.

Our work is not done however, and we are still looking into the security of mobile devices. This summer we are extending the work from our other 2015 paper Security Metrics for the Android Ecosystem where we analysed the composition of Android vulnerabilities. Last time we used distributions of deployed Android versions on devices from Device Analyzer (an Android measurement app we deployed to Google Play), the device management system of a FTSE 100 company, and User-Agent string data from an ISP in Rwanda. If you might be able to share similar data with us to support our latest research work then please get in touch: contact@androidvulnerabilities.org.

Open Source Summit Europe

I am at the 2018 Open Source Summit Europe in Edinburgh where I’ll be speaking about Hyperledger projects. In follow-ups to this post, I’ll live-blog security related talks and workshops.

The first workshop of the summit I attended was a crash course introduction to EdgeX Foundry by Jim White, the organization’s chief architect. EdgeX Foundry is an open source, vendor neutral software framework for IoT edge computing. One of the primary challenges that it faces is the sheer number of protocols and standards that need to be supported in the IoT space, both on the south side (various sensors and actuators) as well as the north side (cloud providers, on-premise servers). To do this, EdgeX uses a microservices based architecture where all components interact via configurable APIs and developers can choose to customize any component. While this architecture does help to alleviate the scaling issue, it raises interesting questions with respect to API security and device management. How do we ensure the integrity of the control and command modules when those modules themselves are federated across multiple third-party-contributed microservices? The team at EdgeX is aware of these issues and is a major theme of focus for their upcoming releases.

Euro S&P

I am at the IEEE Euro Security and Privacy Conference in London.

The keynote talk was by Sunny Consolvo, who runs Google’s security and privacy UX team, and her topic was user-facing threats to privacy and security. Her first theme was browser warnings, which try to stop users doing what they want to; it’s an interruption, it’s technical and there’s no obvious way forward other than clicking through the warning. In 2013 their SSL warning had a clickthrough rate of 68% while their more explicit and graphic malware warning had only 23% clickthrough. Mozilla’s SSL warning had a much lower 33%, with an icon of a policeman and more explicit tests. After four years of experimenting with watching eyes, corporate styling / branding and extra steps – none of which worked very well – they tried a strategy of clear instruction, attractive preferred choice, and unattractive alternative. The text had less jargon, a low reading level, brevity, specifics, an illustration and colour. Her CHI15 paper shows that the new design did much better, from 69% CTR to 41%. It turns out that many factors are at play; a strong signal is site quality, but this leads many people to continue anyway to sites they have come to trust. The malware clickthrough rate is now down to 5%, and SSL to 21%. That cost five years of a huge team effort, with back-end stuff too as well as UX. It involved huge internal fights, such as with a product manager who wanted the warning to say “this site contains malware” rather than “the site you’re trying to get to contains malware” as it was shorter. Her recent papers are here, here, and here.

A second thread of work is a longitudonal survey of public opinion on privacy ranging from government surveillance to cyber-bullying. This has run since 2015 in sixteen countries. 84% of respondents thought limiting access to online but not public data is very or extremely important. 84% were concerned about hackers vs 55% worried about governments and 53% companies. 20% of Germans are very angry about government access to personal data versus 10% of Brits. Most people believe national security justifies data access (except in South Korea) while no country’s people believes the government should have access to police non-violent crime. Most people everywhere support targeted monitoring but nowhere is there majority support for bulk surveillance. In Germany 53% believed everyone should have the right to send anonymous encrypted email while in the UK it’s 39%. Germans were pessimistic about technology with only 4% believing it was possible to be completely anonymous online. Over 88% believe that freedom of expression is very or extremely important and less than 1% unimportant; but over 70% didn’t believe that cyberbullying should be allowed. Opinions are more varied on extremist religious content, with 10.9% agreeing it should be allowed and 21% saying “it depends”.

Her third thread was intimate partner abuse, which has been experienced by 27% of women and 11% of men. There are typically three phases: a physical control phase where the abuser has access to the survivor’s device and may install malware, or even destroy devices; an escape phase which is high-risk as they try to find a new home, a job and so on; and a life-apart phase when they might want to shield location, email address and phone numbers to escape harassment, and may have lifelong concerns. Risks are greater for poorer people who may not be able to just buy a new phone. Sunny gave some case stories of extreme mate guarding and survivors’ strategies such as using a neighbour’s phone or a computer in a library or at work. It takes seven escape attempts on average to get to life apart. After escape, a survivor may have to restrict childrens’ online activities and sever mutual relationships; letting your child post anything can leak the school location and lead to the abuser turning up. She may have to change career as it can be impossible to work as a self-employed professional if she can no longer advertise. The takeaway is that designers should focus on usability during times of high stress and high risk; they should allow users to have multiple accounts; they should design things so that someone reviewing your history should not be able to tell you deleted anything; they should push 2-factor authentication, unusual activity notifications, and incognito mode. They should also think about how a survivor can capture evidence for use in divorce and custody cases while minimising the trauma. Finally she suggests serious research on other abuse survivors of different age groups and in different countries. For more see her paper here.

I will try to liveblog the rest of the talks in followups to this post.

What you get is what you C

We have a new paper on compiler security appearing this morning at EuroS&P.

Up till now, writers of crypto and security software not only have to fight the bad guys. We also have to deal with compiler writers, who every so often dream up some new optimisation routine which spots the padding instructions that we put in to make our crypto algorithms run in constant time, or the tricks that we use to ensure that sensitive data will be zeroised when a function returns. All of a sudden some critical code is optimised away, your code is insecure, and you scramble to figure out how to outwit the compiler once more.

So while you’re fighting the enemy in front, the compiler writer is a subversive fifth column in your rear.

It’s time that our toolsmiths were our allies rather than our enemies. We have therefore worked out what’s needed for a software writer to tell a compiler that a loop really must be executed in constant time, or that a variable really must be set to zero when a function returns. Languages like C have no way of expressing programmer intent, so we do this by means of code annotations.

Doing it properly turns out to be surprisingly tricky, but we now have a working proof of concept in the form of plugins for LLVM. For more details, and links to the code, see the web page of Laurent Simon, the lead author; the talk slides are here. This is the first technical contribution in our research programme on sustainable security.

When safety and security become one

What happens when your car starts getting monthly upgrades like your phone and your laptop? It’s starting to happen, and the changes will be profound. We’ll be able to improve car safety as we learn from accidents, and fixing a flaw won’t mean spending billions on a recall. But if you’re writing navigation code today that will go in the 2020 Landrover, how will you be able to ship safety and security patches in 2030? In 2040? In 2050? At present we struggle to keep software patched for three years; we have no idea how to do it for 30.

Our latest paper reports a project that Éireann Leverett, Richard Clayton and I undertook for the European Commission into what happens to safety in this brave new world. Europe is the world’s lead safety regulator for about a dozen industry sectors, of which we studied three: road transport, medical devices and the electricity industry.

Up till now, we’ve known how to make two kinds of fairly secure system. There’s the software in your phone or laptop which is complex and exposed to online attack, so has to be patched regularly as vulnerabilities are discovered. It’s typically abandoned after a few years as patching too many versions of software costs too much. The other kind is the software in safety-critical machinery which has tended to be stable, simple and thoroughly tested, and not exposed to the big bad Internet. As these two worlds collide, there will be some rather large waves.

Regulators who only thought in terms of safety will have to start thinking of security too. Safety engineers will have to learn adversarial thinking. Security engineers will have to think much more about ease of safe use. Educators will have to start teaching these subjects together. (I just expanded my introductory course on software engineering into one on software and security engineering.) And the policy debate will change too; people might vote for the FBI to have a golden master key to unlock your iPhone and read your private messages, but they might be less likely to vote them a master key to take over your car or your pacemaker.

Researchers and software developers will have to think seriously about how we can keep on patching the software in durable goods such as vehicles for thirty or forty years. It’s not acceptable to recycle cars after seven years, as greedy carmakers might hope; the embedded carbon cost of a car is about equal to its lifetime fuel burn, and reducing average mileage from 200,000 to 70,000 would treble the car industry’s CO2 emissions. So we’re going to have to learn how to make software sustainable. How do we do that?

Our paper is here; there’s a short video here and a longer video here. The full report is available from the EU here.

DigiTally

Last week I gave a keynote talk at CCS about DigiTally, a project we’ve been working on to extend mobile payments to areas where the network is intermittent, congested or non-existent.

The Bill and Melinda Gates Foundation called for ways to increase the use of mobile payments, which have been transformative in many less developed countries. We did some research and found that network availability and cost were the two main problems. So how could we do phone payments where there’s no network, with a marginal cost of zero? If people had smartphones you could use some combination of NFC, bluetooth and local wifi, but most of the rural poor in Africa and Asia use simple phones without any extra communications modalities, other than those which the users themselves can provide. So how could you enable people to do phone payments by simple user actions? We were inspired by the prepayment electricity meters I helped develop some twenty years ago; meters conforming to this spec are now used in over 100 countries.

We got a small grant from the Gates Foundation to do a prototype and field trial. We designed a system, Digitally, where Alice can pay Bob by exchanging eight-digit MACs that are generated, and verified, by the SIM cards in their phones. For rapid prototyping we used overlay SIMs (which are already being used in a different phone payment system in Africa). The cryptography is described in a paper we gave at the Security Protocols Workshop this spring.

Last month we took the prototype to Strathmore University in Nairobi to do a field trial involving usability studies in their bookshop, coffee shop and cafeteria. The results were very encouraging and I described them in my talk at CCS (slides). There will be a paper on this study in due course. We’re now looking for partners to do deployment at scale, whether in phone payments or in other apps that need to support value transfer in delay-tolerant networks.

There has been press coverage in the New Scientist, Engadget and Impress (original Japanese version).

Report on the IP Bill

This morning at 0930 the Joint Committee on the IP Bill is launching its report. As one of the witnesses who appeared before it, I got an embargoed copy yesterday.

The report s deeply disappointing; even that of the Intelligence and Security Committee (whom we tended to dismiss as government catspaws) is more vigorous. The MPs and peers on the Joint Committee have given the spooks all they wanted, while recommending tweaks and polishes here and there to some of the more obvious hooks and sharp edges.

The committee supports comms data retention, despite acknowledging that multiple courts have found this contrary to EU and human-rights law, and the fact that there are cases in the pipeline. It supports extending retention from big telcos offering a public service to private operators and even coffee shops. It support greatly extending comms data to ICRs; although it does call for more clarity on the definition, it give the Home Office lots of wriggle room by saying that a clear definition is hard if you want to catch all the things that bad people might do in the future. (Presumably a coffee shop served with an ICR order will have no choice but to install a government-approved black box. or just pipe everything to Cheltenham.) It welcomes the government decision to build and operate a request filter – essentially the comms database for which the Home Office has been trying to get parliamentary approval since the days of Jacqui Smith (and which Snowden told us they just built anyway). It comes up with the rather startling justification that this will help privacy as the police may have access to less stuff (though of course the spooks, including our 5eyes partners and others, will have more). It wants end-to-end encrypted stuff to be made available unless it’s “not practicable to do so”, which presumably means that the Home Secretary can order Apple to add her public key quietly to your keyring to get at your Facetime video chats. That has been a key goal of the FBI in Crypto War 2; a Home Office witness openly acknowledged it.

The comparison with the USA is stark. There, all three branches of government realised they’d gone too far after Snowden. President Obama set up the NSA review group, and implemented most of its recommendations by executive order; the judiciary made changes to the procedures of the FISA Court; and Congress failed to renew the data retention provisions in the Patriot Act (aided by the judiciary). Yet here in Britain the response is just to take Henry VIII powers to legalise all the illegal things that GCHQ had been up to, and hope that the European courts won’t strike the law down yet again.

People concerned for freedom and privacy will just have to hope the contrary. The net effect of the minor amendments proposed by the joint committee will be to make it even harder to get any meaningful amendments as the Bill makes its way through Parliament, and we’ll end up having to rely on the European courts to trim it back.

For more, see Scrambling for Safety, a conference we held last month in London on the bill and whose video is now online, and last week’s Cambridge symposium for a more detailed analysis.

CHERI: Architectural support for the scalable implementation of the principle of least privilege

[CHERI tablet photo]
FPGA-based CHERI prototype tablet — a 64-bit RISC processor that boots CheriBSD, a CHERI-enhanced version of the FreeBSD operating system.
Only slightly overdue, this post is about our recent IEEE Security and Privacy 2015 paper, CHERI: A Hybrid Capability-System Architecture for Scalable Software Compartmentalization. We’ve previously written about how our CHERI processor blends a conventional RISC ISA and processor pipeline design with a capability-system model to provide fine-grained memory protection within virtual address spaces (ISCA 2014, ASPLOS 2015). In our this new paper, we explore how CHERI’s capability-system features can be used to implement fine-grained and scalable application compartmentalisation: many (many) sandboxes within a single UNIX process — a far more efficient and programmer-friendly target for secure software than current architectures.

Continue reading CHERI: Architectural support for the scalable implementation of the principle of least privilege