Until about now, most of the text online was written by humans. But this text has been used to train GPT3(.5) and GPT4, and these have popped up as writing assistants in our editing tools. So more and more of the text will be written by large language models (LLMs). Where does it all lead? What will happen to GPT-{n} once LLMs contribute most of the language found online?
And it’s not just text. If you train a music model on Mozart, you can expect output that’s a bit like Mozart but without the sparkle – let’s call it ‘Salieri’. And if Salieri now trains the next generation, and so on, what will the fifth or sixth generation sound like?
In our latest paper, we show that using model-generated content in training causes irreversible defects. The tails of the original content distribution disappear. Within a few generations, text becomes garbage, as Gaussian distributions converge and may even become delta functions. We call this effect model collapse.
Just as we’ve strewn the oceans with plastic trash and filled the atmosphere with carbon dioxide, so we’re about to fill the Internet with blah. This will make it harder to train newer models by scraping the web, giving an advantage to firms which already did that, or which control access to human interfaces at scale. Indeed, we already see AI startups hammering the Internet Archive for training data.
After we published this paper, we noticed that Ted Chiang had already commented on the effect in February, noting that ChatGPT is like a blurry jpeg of all the text on the Internet, and that copies of copies get worse. In our paper we work through the math, explain the effect in detail, and show that it is universal.
This does not mean that LLMs have no uses. As one example, we originally called the effect model dementia, but decided to rename it after objections from a colleague whose father had suffered dementia. We couldn’t think of a replacement until we asked Bard, which suggested five titles, of which we went for The Curse of Recursion.
So there we have it. LLMs are like fire – a useful tool, but one that pollutes the environment. How will we cope with it?