Common graphics software now offers powerful tools for inpainting – using machine-learning models to reconstruct missing pieces of an image. They are widely used for picture editing and retouching, but like many sophisticated tools they can also be abused. They can remove someone from a picture of a crime scene, or remove a watermark from a stock photo. Could we make such abuses more difficult?
We introduce Markpainting, which uses adversarial machine-learning techniques to fool the inpainter into making its edits evident to the naked eye. An image owner can modify their image in subtle ways which are not themselves very visible, but will sabotage any attempt to inpaint it by adding visible information determined in advance by the markpainter.
One application is tamper-resistant marks. For example, a photo agency that makes stock photos available on its website with copyright watermarks can markpaint them in such a way that anyone using common editing software to remove a watermark will fail; the copyright mark will be markpainted right back. So watermarks can be made a lot more robust.
In the fight against fake news, markpainting news photos would mean that anyone trying to manipulate them would risk visible artefacts. So bad actors would have to check and retouch photos manually, rather than trying use inpainting tools to automate forgery at scale.
This paper has been accepted at ICML.