A project called NSA@home has been making the rounds. It’s a gem. Stanislaw Skowronek got some old HDTV hardware off of eBay, and managed to create himself a pre-image brute force attack machine against SHA-1. The claim is that it can find a pre-image for an 8 character password hash from a 64 character set in about 24 hours.
The key here is that this hardware board uses 15 field programmable gate arrays (FPGAs), which are generic integrated circuits that can perform any logic function within their size limit. So, Stanislaw reverse engineered the connections between the FPGAs, wrote his own designs and now has a very powerful processing unit. FPGAs are better at specific tasks compared to general purpose CPUs, especially for functions that can be divided into many independently-running smaller chunks operating in parallel. Some cryptographic functions are a perfect match; our own Richard Clayton and Mike Bond attacked the DES implementation in the IBM 4758 hardware security module using an FPGA prototyping board; DES was attacked on the FPGA-based custom hardware platform, the Transmogrifier 2a; more recently, the purpose-built COPACOBANA machine which uses 120 low-end FPGAs operating in parallel to break DES in about 7 days; a proprietary stream cipher on RFID tokens was attacked using 16 commercial FPGA boards operating in parallel; and finally, people are now in the midst of cracking the A5 stream cipher in real time using commercial FPGA modules. The unique development we see with NSA@home is that it uses a defunct piece of hardware.