I’ve spent the day at the First USENIX Workshop on Offensive Technologies (WOOT07) — an interesting new workshop on attack strategies and technologies. The workshop highlights the tension between the “white” and “black” hats in security research — you can’t design systems to avoid security problems if you don’t understand what they are. USENIX‘s take on such a forum is less far down the questionable ethical spectrum than some other venues, but it certainly presented and talked about both new exploits for new vulnerabilities, and techniques for evading current protections in concrete detail.
I presented, “Exploiting Concurrency Vulnerabilities in System Call Wrappers,” a paper on the topic of compromising system call interposition-based protection systems, such as COTS virus scanners, OpenBSD and NetBSD’s Systrace, the TIS Generic Software Wrappers Toolkit (GSWTK), and CerbNG. The key insight here is that the historic assumption of “atomicity” of system calls is falacious, and that on both uniprocessor and multiprocessing systems, it is trivial to construct a race between system call wrappers and malicious user processes to bypass protections. I demonstrated sample exploit code against the Sysjail policy on Systrace, and IDwrappers on GSWTK, but the paper includes a more extensive discussion including vulnerabilities in sudo‘s Systrace monitor mode. You can read the paper and see the presentation slides here. All affected vendors received at least six months, and in some cases many years advance notice regarding these vulnerabilities.
The moral, for those unwilling to read the paper, is that system call wrappers are a bad idea, unless of course, you’re willing to rewrite the OS to be message-passing. Systems like the TrustedBSD MAC Framework on FreeBSD and Mac OS X Leopard, Linux Security Modules (LSM), Apple’s (and now also NetBSD’s) kauth(9), and other tightly integrated kernel security frameworks offer specific solutions to these concurrency problems. There’s plenty more to be done in that area.
Concurrency issues have been discussed before in computer security, especially relating to races between applications when accessing /tmp, unexpected signal interruption of socket operations, and distributed systems races, but this paper starts to explore the far more sordid area of OS kernel concurrency and security. Given that even notebook computers are multiprocessor these days, emphasizing the importance of correct synchronization and reasoning about high concurrency is critical to thinking about security correctly. As someone with strong interests in both OS parallelism and security, the parallels (no pun intended) seem obvious: in both cases, the details really matter, and it requires thinking about a proverbial Cartesian Evil Genius. Anyone who’s done serious work with concurrent systems knows that they are actively malicious, so a good alignment for the infamous malicious attacker in security research!
Some of the other presentations have included talks about Google’s software fuzzing tool Flayer based on Valgrind, attacks on deployed SIP systems including AT&T’s product, Bluetooth sniffing with BlueSniff, and quantitative analyses of OS fingerprinting techniques. USENIX members will presumably be able to read the full set of papers online immediately; for others, check back in a year or visit the personal web sites of the speakers after you look at the WOOT07 Programme.